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ABSTRACT

In many healthcare applications, identifying pills given their captured images under
various conditions and backgrounds has been becoming more and more essential.
However, this task is challenging, and a few works have addressed this issue satis-
factorily. The lack of high-quality pill images also raises a significant concern when
dealing with this problem. Due to the shortage of data, deep learning-based frame-
works fail to converge and are unable to identify the most discriminated character-
istics between classes. Additionally, some pills have extremely few visual variants,
which is insufficient for models to distinguish in some cases. To alleviate these
issues, this study presents a novel framework for pill detection, named KGPNet,
that uses external links between labels in the form of a knowledge graph. Specific-
ally, we propose a novel method for modeling the implicit association between pills
in the presence of an external data source, in this case, prescription information.
Second, a deep Graph Neural Network-based approach is used to perform node
embedding using this graph presentation. Third, a final framework is provided that
uses this information to accomplish final localization and categorization. In this
output module, the whole graph representation of all labels is soft-mapped based
on the current input images in order to provide an adaptive graph presentation.
This output is then utilized to fetch into a Graph Transformer module, resulting
in a semantically-rich context vector that assists with the final detection. To our
knowledge, this is the first study to use external prescription data to establish as-
sociations between medicines and leveraging that information to enhance the per-
formance of pill detection problem. The architecture of KGPNet is lightweight and
has the flexibility to incorporate into any recognition backbones. It can integrate
any external data source in the form of graph representation. Experimentally, the
proposed KGPNet demonstrates its huge potential by outperforming all comparison
benchmarks concerning the targeted detection task. In addition, different testing
scenarios have been undertaken to determine the influence of the external graph,
as well as different proposed modules on the model’s performance. Specifically,
KGPNet shows its superior by an enhancement of 9.4% for COCO mAP metrics,
over Faster R-CNN. In addition, when putting together with another method which

also leverages external knowledge, KGPNet enhances mAP score by 4.0.

Keyword: Pill Detection, Knowledge Graph, Graph Embedding, CNN.
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CHAPTER 1. INTRODUCTION

In this chapter, I will present an overview of the problem to be solved, as well as
a summary of the existing works and their key shortcomings. The study objectives

and directions are next described, followed by the contributions of my thesis.

1.1 Problem Statement

Medicines are used to cure diseases and improve patients’ health. Medication
mistakes, however, may have serious consequences, including diminishing the ef-
ficacy of the treatment, causing adverse effects, or even leading to death. Some

common mistakes in medication use are listed below.

 Using pills in wrong times. This circumstance cause little serious effect, but

potential risks still exist and should be avoid.

 Using pills with wrong amounts, medications. This is the most common
mistake made by patients during the pill usage. This mistake may lead to de-

gradation in drugs’ efficiency, even cause unwanted side effects.

» Using wrong types of pills. This is the most unwanted mistake considering
drug intake. The seriousness of this action is highest, owing to it could bring

about new pathologies or even be lethal in some cases.

As stated in a WHO report, drug abuse rather than sickness accounts for one-third
of all deaths [1]. Moreover, according to Yaniv et al. [2], medication errors claim
the lives of about six to eight thousand people every year. Recently, US National
Centers for Biomedical Computing (NCBCs) states that taking this country alone,
each year, 7000 to 9000 people die due to a medication error. Additionally, hun-
dreds of thousands of individuals encounter adverse reactions or other issues asso-
ciated to a medicine, but seldom report them. Each year, the overall cost of caring
for patients impacted by medication-related mistakes surpasses 40 billion, with
over 7 million individuals affected. In addition to the financial expense, drug mis-
takes cause patients psychological and physical pain and suffering. In Vietnam,
according to National Center of DI&ADR [3], adverse drug reactions and medic-
ation mistakes were reported in 17,276 cases - or 177 per million persons. Figure
1.1 provides a breakdown of the report’s ratios categorized by economic areas. As
seen by the graph, the majority of received complaints related to patients from es-
tablished provinces/cities. In addition, several inaccuracies in the actual usage of
pharmaceuticals have not been reported to the national center for analysis of data.

Numerous challenges associated with the care and treatment of illnesses contrib-
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ute to the prevalence of medication mistakes in Vietnam. First, the digitalization
of electronic medical records for patients in Vietnam is still in its beginnings, and
the majority of medical records are still maintained on paper. This circumstance
complicates the management of those records and recommended prescription in
particular. The second issue stems from Vietnam’s approach to regulating the drug

trade.

M Red River Delta

B Northern midlands and mountains

H North Central and Central Coast
Central Highlands

M Southeast

B Mekong River Delta

Figure 1.1: Anually ADR Report in VietNam, 2021.

In Vietnam, it is simple to purchase medicine at any drugstore without a pre-
scription. This results in major difficulties such as purchasing the incorrect drug,
which leads to improper pharmaceutical use. To emphasize the significance of tak-
ing medication correctly, WHO has chosen the subject Medication Without Harm
for World Patient Safety Day 2022 [4].

Medication errors is mainly owing to the difficulty in manually distinguishing
pills owing to the wide variety of drugs and similarities in pill colors and shapes. To
this end, I devote my thesis to dealing with the Pill Detection problem for assisting

people to recognise their medications automatically with high accuracy.

1.2 Background and Research Problems

The pill recognition problem is a branch of well known Object Detection tasks,
named Intra-class Object Detection. However, compared with the original task,
there are some similarities as well as divergences, which are summarized in Table
1.1.

All differences mentioned in Tab. 1.1 can be better illustrated by Figure 1.2. In
recent years, Machine Learning (ML) and Deep Learning (DL) have emerged as vi-
able techniques for tackling general object classification problems. Some of works
dealing with this problem would be mentioned in Chapter 2. All of the aforemen-
tioned discrepancies between the two tasks, however, make it difficult to properly

adapt these frameworks to the pill detection problem, or, if adapt successfully, to
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Object Detection

Pill Detection

Figure 1.2: Image instances for two tasks Object Detection and Pill Detection.

Table 1.1: Comparison between two tasks Object Detection and Pill Detection

Object Detection

Pill Detection

Two main objectives:

> Localize the position of objects - pills

Similarity (Determine the bounding boxes contain objects)

> Classify the object lying in each bounding box

Objects need to be classified be- Pills need to be classified is in
Difference | long to different categories fact just a single label in normal

There is spatial information in
images

The relations between objects in
images is explicit (The man rides
bike, dog chases balloon,...)

Object Detection

There is no ‘depth’ dimension in
pill images, hence no spatial in-
formation

The relations between pills in
images is implicit, and should be
formulated

maintain a reliable accuracy. This served as the first motivation for me to create an

algorithm to solve the pill detection challenge.

There are some previous publications, which would be briefly discussed in

Chapter 2, that did propose solution to pill detection problem. However, despite

numerous efforts, this task remains problematic for current existing works, owing

to following reasons.

* Firstly, all the previous studies dealing with this problem limit their frame-

works in recognizing only a single pill per each image. This makes their

frameworks not be highly applicable in most cases, in which patients have to

take more than one pill at a time. In addition, to the best of my knowledge,

there is no publicly available dataset of pill images that contains various
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pills in a single images, which can be a great hindrance for existing works.

» Secondly, pill misidentification often occurs with tablets that look substan-
tially similar. Figure 2.6 shows some of the misclassification results made by
a deep learning model. It can be seen that the existing frameworks, which
just rely on visual appearances of pills, can not distinguish pills that share
almost identical shapes, colors. The situation is even worse when taking into
account other conditions of environment such as variance of light, shadow,

angle of pill captures, . ..

1.3 Research Objectives and Conceptual Framework

The first objective of this work is to construct a collection of pill pictures ac-
cording to what patients really consume. By building up this dataset, it can serve
as the foundation for solving many existing practical problems and also open
up many more research directions. For doing so, the medication captures have to
satisfy some criteria. These photos may depict different types of medicines, but
they must all be related. This is due to the fact that medicines taken together should
not interfere with one another while treating or easing certain symptoms or condi-
tions. In reality, there are several contraindications that prevent patients from taking

certain medications together.

This research also aims to overcome the second deficiency of all previous ef-
forts. Intuitively, there should be no feasible solution to the challenge of distin-
guishing two identical-looking tablets based just on their visual characteristics.
This is true even for human experts such as pharmacists, doctors, ... Motivated by
this understanding, the purpose of this research is to provide an additional source
of information that can assist pill detection in such difficult circumstances. In
addition, I propose a novel architecture that exploits this external knowledge
to improve accuracy and, in particular, to prevent the misclassification of tablets
with identical appearances. I utilize the information retrieved from a specific col-
lection of prescriptions as external knowledge. By using such external information,
we can discover the link between the medications, such as the probability of their
co-occurrence. This information will be used to improve the accuracy of the pill
detection model.

1.4 Contributions

To summarize, my main contributions in this work are as follows:

e [ am the first to address a so-called contextual pill detection problem, which

recognizes pills in a picture of a patient’s pill intake.
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e [ build the first pill captures dataset that contain the actual medications taken

from real prescriptions.

e [ propose a novel deep learning-based approach to solve the contextual pill de-
tection problem. Specifically, we design a method to construct a prescription-
based knowledge graph representing the relationship between pills. This know-
ledge graph is then exploited to improve pill localization and classification

accuracy.

e I design an auxiliary loss function with a dedicated strategy to enhance the

classification accuracy.

¢ | conduct thorough experiments on my custom dataset of drugs taken in real-
world settings and compare the performance of the proposed solution to ex-
isting methods. The experimental findings indicate that my proposed model

outperforms significantly the others.

1.5 Organization of Thesis

The organization of the thesis is as follows.

Chapter 1: Introduction. Covers an overview of the problem to be solved,
current works and limitations, goals and directions of the solution, and finally the

contributions of my project.

Chapter 2: Literature Review. Discusses about the context of the problem, as

well as related studies in the field of object and pill detection.

Chapter 3: Preliminary. Presents Some fundamental concepts of convolutional

neural networks, graph neural networks, which directly relate to my proposal.

Chapter 4: Methodology. Describe my proposed method for Pill Detection

problem in detail.

Chapter 5: Numerical Result. Demonstrates of the dataset used, real-world
experimental scenarios, baseline assessments on the built data set. Then, compares
the proposed KGPNet method with other baseline models and finally discusses
how effective KGPNet is.

Chapter 6: Conclusions. Presents general conclusions for the project and some

future development directions.
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This chapter discusses about the context - the scope of my investigating problem,
as well as some core related studies in the field of object and pill detection.

2.1 Scope of research

As previously stated, all the previous studies dealing with the problem of Pill
Detection limit their frameworks in recognizing only a single pill per each image
[5] [6] [7]. This makes their frameworks not be highly applicable in most cases, in
which patients have to take more than one pill at a time. To be more specific, these

are some major shortcomings for choosing that research scope.

* The normal frameworks would require patients to take n images correspond-

ing to n pills they takes at a single time, which is not time-efficiency.

* The pills that are visually identical can make these frameworks confuse in

differentiate them, which is not accuracy-reliable.

* The work of these frameworks would only base on the input images, and
in turn only one pill at a time, hence can not leverage the inter-connections

between the pills.

A dataset used by some previous works Desired dataset that mach with current scope
Figure 2.1: Illustration for pills captures that match with different research scopes.

I focus on a practical application that recognizes pills in photos of a patient’s pill
intake, in contrast to previous efforts. Figure 2.1 makes an illustration for medic-
ation images that match with this direction. With this new study scope, there is a
great deal more information that can be used, and if it is properly resolved, the out-
come framework will undoubtedly be appropriate to the reality, as it will address

the deficiencies of the old scope.
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2.2 Related Works
In recent years, Machine Learning (ML) and Deep Learning (DL) have emerged

as viable techniques for tackling general object classification problems, as well as
our pill detection task. Subsection 2.2.1 would encapsulate some details of popular
Object Detection frameworks. Some works with higher correlation to Pill Detec-

tion is presented in 2.2.2.

2.2.1 Object Detection

Object Detection is one of the most fundamental and challenging computer vis-
ion tasks. Deep learning approaches have emerged as a potential method for learn-
ing feature representations directly from data and have led to notable advances in
generic object detection. This section is limited to only the works targeting generic

Object Detection task and following this approach.

Generic object detection, also called generic object category detection (Zhang
et al. 2013 [8]), is defined as follows. Determine, given an image, if there are in-
stances of objects from specified categories (often several categories; for example,
200 categories in the ILSVRC object detection challenge [9]) and, if present, re-
port the spatial location and extent of each occurrence. Unlike detection of specific
instances, a larger focus is placed on recognizing a broad variety of natural cat-
egories. The major challenges in targeting this task are high quality/accuracy and
high efficiency. High quality detection must precisely localize and recognize ob-
jects regardless the wide variety of object categories (high distinctiveness) and the
intra-class variance of object instances from the same category (high robustness).
High efficiency necessitates that the full detection work be executed in real-time

with enough memory and storage requirements.

) VGGNet Faster RCNN
(Simonyan and Zisserman)  (Ren et al.) YOLO9000

NIN (Redmon and Farhadi)

(Lin etal.)

Fast RCNN
RCNN GoogLeNet  (Girshick)
(Girshick et al.) (Szegedy et al.)

Mask RCNN CornerNet

ResNet RFCN
(He et al.) (Law and Deng)

(Heetal.) (Daietal)
2o
I

% o

DetectorNet

(Szegedy et al.) (Em DenseNet

MSC Multibox sSD
(Liu et al.) (Huang et al.)

RetinaNet
.. § t(Szegedy etal.) (Lin et al.)
e

YOLO .
Fedsh) ) L

ultiBox
an et al.)

OverFeat
(Sermanet et al.)

Figure 2.2: Milestones in Generic Object Detection

Figure 2.2 illustrates the evolution of Object Detection framework ever since

Deep Learning entered the field, organized into two main categories:

* Two stage detection frameworks: An image is used to produce category-
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independent region proposals, CNN features are extracted from these areas,
and then category-specific classifiers are used to identify the category labels

of the proposals.

* One stage detection frameworks, or region proposal free frameworks: Pre-
dict class probabilities and bounding box offsets directly from entire images
using a single feed-forward CNN in a homogeneous setup, without region

proposal creation or post-classification.

a, Region Based (Two Stage) Detection Frameworks

This section briefly introduces some famous works following this approach,

containing in Figure 2.2.

R-CNN [10]. Girshick et al. [10] [11] were among the first to investigate CNNs
for generic object detection and developed R-CNN, which combines AlexNet [12]
with a region proposal selective search [13] (Figure 2.3a). The procedures carried
out by R-CNN is as follow.

» Region Proposals Generation: Selective search algorithm is used to generate

2000 class-independent proposals in each image.

* Feature extraction for proposals: AlexNet-based CNN is fine-tuned with the
warped images of size 227 x 227 cut from the original images corresponding

to the output proposals.

* Object classifier with SVM: The features from previous stage are fed into
SVM for detecting the presence or absence of an object belonging to a partic-

ular class.

* Bounding box regression: The authors include a bounding-box regression step

to learn corrections in the predicted bounding box location and size.

RCNN
Fast RCNN

For Each Rol

- CNN
C SVM Classifiers
= ™| "CBB Regressors
(Pretrained)
Each

Extract

Feature Maps;  Rol
Projected Region  Region

Input Extract Features proposals

Input Region
Image Proposals CNN Features Image

Classification

Classification

Vector

(a) (b)
Figure 2.3: High level’s diagrams of region-based (two stage) frameworks.
a - R-CNN; b - Fast R-CNN
Fast R-CNN [14]. Fast R-CNN was proposed to address some major short-
comings of R-CNN, while enhancing its overall performance in both speed as

well as accuracy. Some majors advancements can be seen in Figure 2.3b. With

a new streamlined process of training both BBox Regressor and Classifier simu-
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Faster RCNN RFCN

For Each Rul§
M H

Feature

Input

act Fea < Feature
Image Extract Features Maps Layes

Input Feature
I P! b  Extract Features I’t/“,i':': Projected Regiol
mage aps Proposals

(@ (b)
Figure 2.4: High level’s diagrams of region-based (two stage) frameworks.
a - Faster R-CNN; b - RFCN

taneously, Fast R-CNN makes allowance for an end-to-end style of training. In
addition, Fast R-CNN also leverages the concept of spreading the convolution com-
putation among region proposals. With a newly-introduced Rol Pooling operation,

it is the features that get warped to fixed length, instead of the images.

Faster R-CNN [15]. Fast R-CNN, though has gone a long way to boosted up the
speed over R-CNN, still has a bottleneck of using external Region Proposal module.
To this end, Ren et al. [15] offered an efficient and accurate Region Proposal Net-
work (RPN) for generating region proposals. Efficiently, they re-utilize the same
backbone network used by Fast R-CNN module, using features from the last shared
convolutional layer to achieve the task of RPN for region proposal. Architecture of
Faster R-CNN is described in 2.4a.

RFCN [16]. Pointed out that Faster R-CNN still relies on a region-wise sub-
network that work with individual Rol, RFCN is proposed by Dai et al., which
is fully convolutional (no hidden FC layers) with almost all computations shared
over the entire image. Constrast with Faster R-CNN in which the computation after
Rol Pooling layer cannot be shared, RFCN introduces a shared Rol sub-network
and from that Rol crops are taken from the last layer of CONV features prior to
prediction. In this module, a bank of specialized CONV layers (Fig.2.4b) is used
for producing position-sensitive score maps, together with modified Rol Pooling

with position information being awared.

b, Unified (One Stage) Frameworks

Since R-CNN [10], region-based pipeline techniques have prevailed, with frame-
works utilizing Faster R-CNN [15] producing the best performance on major bench-
mark datasets. However, these works show their major drawback of great computa-
tional overheads, hence can not be applied to embedded systems or mobile devices.

That’s the main motivation for the approach of unified detection strategy.

OverFeat [17]. This framework can be considered as one of the first single-

stage object detectors based on fully convolutional networks. The key procedures
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of OverFeat is as follow.

* Identification of potential object possibilities by categorizing multiscale im-
ages using a sliding window technique. OverFeat uses AlexNet backbone [12],
with replacement of FC layers by 1 x 1 Convolutional Layer. This makes it can
take an arbitrary sized images as input, unlike previous works. In addition,

OverFeat leverages multiscale features to improve the overall performance.

* Major voting predictions by offset max pooling. OverFeat applies offset max

pooling after the last CONV layer, results in many predictions for voting.

* Bounding box regression. Once being identified, an object is fed into a Bound-

ing box regressor for predicting its box.

* Predictions combination. OverFeat uses a greedy merge strategy to combine

the individual bounding box predictions across all locations and scales.

YOLO [18]. Redmon et al. introduced YOLO (You Only Look Once) frame-

work which casts object detection as a regression problem from image pixels to

spatially separated bounding boxes and associated class probabilities, illustrated in

2.5a. With the ablation of region proposal module, YOLO directly predicts detec-

tions using a small set of candidate regions. Features of entire pictures are used

directly. By deviding an image into S x S grid, each predicting C' class probabilit-

ies, B bounding box locations, together with confidence scores. With entire image’s

features as input, YOLO can greatly reduce false positive cases with background

confusions, but in turn perform worse than Faster R-CNN for localization task.

Aforementioned techniques are major advancements of YOLOvV1, and below lists

the technical improvements of other alternatives toward times.

10

* YOLOV2. This version introduce the concept of anchor box. With it, the IoU
of pre-defined anchor box and the predicted bounding box can be calculated,
which acts as a threshold to decide whether the probability of the detected

object is sufficient to make a prediction or not.

* YOLOV3. YOLOv3 comprised of 75 convolutional layers without fully con-
nected or pooling layers, resulting in a significant reduction in model size and
weight. It utilized residual models (from the ResNet model) for multiple fea-
ture learning using the feature pyramid network (FPN) while retaining low

inference times.

* YOLOv4. YOLOV4 introduced the bag of freebies (techniques that improve
model performance without raising the cost of inference) and the bag of spe-

cials (techniques that increase accuracy while increasing the computation cost).
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Figure 2.5: High level’s diagrams of region-free (single stage) frameworks.
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* YOLOVS. With this most-recent advancement, the automated learning of an-
chor boxes is installed, and there are also changes in data augmentation and

loss calculations.

SSD [19]. With the aim of preserving real-time speed without sacrificing too
much detection accuracy, Single Shot Detector (SSD) (Figure 2.5b) was proposed,
faster than YOLO [18] and with detection accuracy approximated that of Faster R-
CNN [15]. Similar to YOLO, SSD predicts a predetermined number of bounding
boxes and scores, followed by an NMS step to generate the final detection. The
CNN network in SSD is fully convolutional, with early layers based on a conven-
tional design, followed by multiple decreasingly sized auxiliary Conv layers. SSD
conducts detection at several scales by acting on numerous Conv feature maps,
each of which predicts category scores and box offsets for bounding boxes of ap-
propriate sizes, as the spatial resolution of the information in the final layer should

be too coarse for exact localization.

2.2.2 Pill Detection

Many studies have employed machine learning in the pill recognition chal-
lenge [5], [7], [20]. Some common techniques such as convolutional neural net-
works (CNN) and Graph Neural Networks (GNN) are often used.

Specifically, in [5], the authors first segment the input pill image by a Manifold
ranking-based method [21]. Initially, from the input image, an affinity graph is built
for proximity pixels based on their color. Following, manifold ranking is performed
in two stages to filter out the foreground mask. The extracted foreground image is
fed into an AlexNet based network for identifying its label.

In [20], Enhanced Feature Pyramid Networks (EFPNs) and Global Convolution
Network (GCN) are combined to enhance the pill localization accuracy. Besides,
the authors leveraged the Xception network [22] to solve the pill recognition prob-

lem.

The authors in [7] studied how to help visually impaired chronic patients in tak-

11
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ing their medications correctly. To this end, they proposed a so-called MedGlasses
system, which combines Al and IoT. MedGlasses comprises smart glasses capable
of recognizing pills, a smartphone app capable of reading medication information
from a QR code and reminding users to take the medication, and a server system

to store user information.

Furthermore, numerous efforts have strived to improve pill recognition accuracy
by incorporating handcrafted features such as color, shape, and imprint. Ling et
al. [23] investigated the problem of few-shot pill detection. The authors proposed
a Multi-Stream (MS) deep learning model that combines information from four
streams: RGB, Texture, Contour, and Imprinted Text. In addition, they offered a
two-stage training technique to solve the data scarcity constraint; the first stage is

to train with all samples, while the second concentrates only on the hard examples.

In [24], the authors integrated three handcrafted features, namely shape, color,
and imprinted text, to identify pills. Specifically, the authors first used statistical
measurements from the pill’s histogram to estimate the number of colors in the
pill. The imprinted text on the pill was then extracted using text recognition tools.
The author also used the decision tree technique to determine the pill shape. The

color, shape, and imprinted text information are then used as input features to train

U Oy &

Groundtruth: ~ Myonal_50mg Ayale Betaserc_16mg

the classification model.

Prediction:  Betaserc_16mg Myonal_50mg Ayale

Figure 2.6: Ill-predicted medicines

Despite numerous efforts, pill detection remains problematic for current exist-
ing works. Firstly, all the previous studies dealing with this problem limit their
frameworks in recognizing only a single pill per each image. This makes their
frameworks not be highly applicable in most cases, in which patients have to take
more than one pill at a time. In addition, to the best of my knowledge, there is
no publicly available dataset of pill images that contains various pills in a single

images, which can be a great hindrance for existing works.

Secondly, pill misidentification often occurs with tablets that look substantially
similar. Figure 2.6 shows some of the misclassification results made by a deep
learning model. It can be seen that the existing frameworks, which just rely on

visual appearances of pills, can not distinguish pills that share almost identical

12
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shapes, colors. The situation is even worse when taking into account other con-

ditions of environment such as variance of light, shadow, angle of pill captures,

13
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The purpose of this chapter is to provide an introduction to some of the core
ideas of convolutional neural networks, as well as graph neural networks. In ad-
dition to that, the rudimentary histories of certain networks are also discussed be-
low. From this, the reader will have a much easier time getting caught up with
the most important elements and my contributions, which will be discussed in the

subsequent chapters.

3.1 Extracting Visual Features Given Input Images

This section will present some fundamental concepts as well as the inner work-
ings of well-known modules extensively used to extract visual information from
photos. In 3.1.1, Convolutional Neural Networks, which are often utilized for clas-
sification and various computer vision tasks, get first analysed. Following, 3.1.2
discusses some well-known Convolutional Network backbones that may be used to

a variety of downstream visional applications.

3.1.1 Convolutional Neural Network (CNN)

Convolutional Neural Network is a type of artificial neural network used in im-
age recognition and processing that is specifically designed to process pixel data
- here images. It is used for extracting the visual features given an image input,

followed by some layers specifically designed for each visional problem.

— CAR
— TRUCK
— VAN

|j |j — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN RLLLE SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

Figure 3.1: Overall flow of Convolutional Neural Networks

Figure 3.1 describes the general flow of most CNNs, together with their basic
building blocks. Convolutional Networks are the combination of three main types
of layers, namely Convolutional Layer, Pooling Layer and Fully-connected (FC)
layer. With each layer added, the CNN’s complexity increases, allowing it to recog-
nize a larger portion of the image. Earlier layers emphasize detailed characteristics

containing in regions, such as colors, shapes and borders. As the visual input goes

14
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through the CNN’s layers, it begins to identify bigger aspects or forms of the overall

object before being used for dedicated visional tasks.

Among the three types of components, Convolutional Layer is the core build-
ing block of a CNN, in which the majority of computations are carried out. This
layer’s working is based on two major factors: mathematical Conv operator and a
learnable set of parameters which takes the role of Convolutional Filter for cap-

turing desirable visual features.

A\ S\ Y
\~
"

e

o%

Input image Filter Output array

(@ (b)
Figure 3.2: Convolutional layer operation. a - Movement of the Filter Kernel over image
receptive fields; b - Conv operation applied at a specific location.

Given a three-dimensional (height, width, and depth) input, the Convolutional
layer’s learnable filters will traverse through the image’s receptive fields to extract
distinctive characteristics. Specifically, the filter is initially applied to a section of
the image, followed by the calculation of a dot product between the input pixels
and the filter. The output array is then given this dot product. After then, the filter
shifts by a stride and the procedure is repeated until the kernel has traversed the
whole image. A feature map, activation map, or convolved feature is the ultimate

result of a sequence of dot products from the input and the filter.

Once the underlying workings of a Convolutional layer are understood, its ad-
vantages over a fully-connected layer in image processing may be outlined as fol-

lows.

* Local Connectivity. Each neuron is only connected to a local region of the
input volume, helping reduce the number of parameters to be learnt, while
still be harmonized with the fact that only features in local regions have strong

relation to each other.

* Parameter sharing. Intuitively, if one feature is useful to compute at some
spatial position (z,y), then it should also be useful to compute at a different

position (z2,y2). Parameter sharing scheme is used to control the number of

15



CHAPTER 3. PRELIMINARIES

parameters while still achieve a good performance.

3.1.2 Modern Convolutional Networks (ConvNets)
Two contributions in 1980 [25] and 1989 [26] by Kunihiko Fukushima and Yann

LeCun set the groundwork for research on convolutional neural networks. More
famously, Yann LeCun employed back-propagation technique to effectively train
neural networks to locate and recognize patterns within a collection of handwrit-
ten zip codes. Throughout the 1990s, he and his colleagues would continue their
study, culminating in LeNet-5 [27], which used the same research ideas to docu-
ment recognition. Since then, other CNN architectural variants have arisen (Fig.
3.3). Aware of the thesis’s length restriction, only some well-known and outstand-

ing studies on Convoltional Neural Networks are introduced in this section.

AlexNet
LeNet GoogleNet DenceNet
‘ ConvNet ‘ VGG Channel
' Boosted CNN
( O
ResNet EfficientNet
Inception ResNeXt
V2V3V4a

Figure 3.3: Evolution of Convolutional Networks up to present.
Image source: https://www.v7labs.com/blog/convolutional-neural-networks-guide
LeNet [27]: This was the first convolutional neural network to be introduced. It
was the first ConvNet that made use of back-propagation technique to optimize a
deep visonal framework. LeNet was trained on 2D grayscale pictures of 32 x 32 x 1
pixels. The objective was to recognize handwritten numbers on bank checks. Fol-
lowing two convolutional-pooling layer blocks were two fully linked classification

layers.

AlexNet [12]: AlexNet was trained on the Imagenet dataset [28] with 15 million
high-resolution images with shape 256 x 256 x 3. ReLLU activation function was
utilized for the first time between convolution layers and pooling layers, together
with overlapping pooling with stride window size. Five convolutional-pooling layer

blocks were followed by three dense layers that were fully linked for classification.

VGGNet [29]: Instead of continually adding more dense layers to the model,
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VGGNet has a different strategy to increase performance. More layers of narrow
convolutions were regarded more effective than fewer layers of larger convolutions,
therefore the essential innovation consisted of combining layers into blocks that

were repeatedly utilized in the design.

GoogleNet [30]: The idea around GoogleNet design is to widen the network
horizontally instead of vertically. It consists of Inception blocks with 1 x 1, 3 x 3,
and 5 x 5 convolution layers, followed by 3 x 3 max pooling with padding (so that
the output has the same shape as the input) on the preceding layer, and concatenates
their output.

ResNet [31]: Observations indicate that as network depth increases, accuracy
becomes saturated and finally declines. Therefore, data scientists offered skip con-
nections as a solution. These connections give an additional channel for input and
gradients to flow, accelerate training, and permit the omission of one or more lay-

ers. This architecture introduced the unit of Residual block based on this insight.

3.2 Extracting Node Features Given Input Graph

In this section, some well-known graph-related tasks, as well as the concepts
of graph neural networks and its inner functionality would be discussed. Subsec-
tion 3.2.1 would discuss the some fundamental graph problems. Some well-known

GNN units for node embedding tasks are further discussed in 3.2.2.

3.2.1 Graph-related Problems

While deep learning efficiently uncovers hidden patterns in Euclidean data,
there are a growing number of applications in which data is represented as graphs.
Existing machine learning techniques face substantial difficulties due to the com-
plexity of graph data. As graphs may be irregular, a graph may contain a variable
number of unordered nodes of varying size, and nodes from a graph may have a
variable number of neighbors, making it difficult to perform some key operations
(such as convolutions) to the graph domain. Some well-known tasks dealing with

graph data are listed in Table 3.1.

Table 3.1: Some well-known graph-related tasks.

Problem ‘ Description

Link Prediction The problem of predicting whether there exist an edge between
two nodes

Node classification The problem of classifying the true category for each node of a
graph

Clustering & Community | The problem of clustering groups of nodes or graphs into

detection clusters

17



CHAPTER 3. PRELIMINARIES

While table 3.1 summarizes the major challenges in graph domain, there is
a procedure in common before solving those actual downstream tasks, which is
Graph-based Embedding. For tackling this problem, earlier works made appli-
ance of matrix factorization [32] [33] or random walks [34]. However, they came
with a major drawback of lacking generalization for unseen data, and are grouped
as transductive learning methods. Graph Neural Network emerged as an inde-
pendent research branch and was able to resolve the problem of the previous ap-

proach. Some introduction about it would be discussed in 3.2.2.

3.2.2 Some well-known Graph Neural Networks

Though earlier works was established quite early [35], [36], it was not until 2014

did the graph neural network techniques actually flourish.

First, before discussing some works of popular graph neural units, there are
some basic denotations designed for graph. A graph is represented as G = (V, F)
where V' is the set of vertices or nodes, and £ is set of edges. Let v; € V' to denote a
node and eij = (v;,v;) € E to denote an edge pointing from v; to v;. The neighbor-
hood of a node v is defined as N(v) = v € V|(v,u) € E. The adjacency matrix A is
an x n matrix with A;; = 11if ¢;; € E and A;; = 0 in opposite cases. A graph may
have node attributes X, where X € R™*? is a node feature matrix with z, € R,

representing the feature vector of a node v.

I choose the module GCN proposed in [37] for briefly discuss the work of Con-
VvGNN, which is a representative and widely-applied technique branch in GNNs.
First introduced by Thomas et. al. [37], one hidden layer of GCN is presented as
folllow.

H' = f(H"™1 A), 3.1

in which:

 H'is the output of i + 1-th layer, each H' has the shape n x f?, where f' is the

hidden feature dimension.
o HY is initialized as node features of nodes X.

Function f in GCN has the formula:
[(H, A) = o(D" 2PAD P H'WY). (3.2)

In equation 3.2, A is the modified version of adjacency matrix A by adding self-
loop connection, D is the degree matrix of A that help normalize A to reduce the

effect of nodes that connect with many neighbors (nodes with high degrees).
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Overall, GCN [37] is still an architecture with simple design, and hence has

some major shortcomings:

* Memory requirement. The weight of model is updated with full-batch gradi-
ent descent. It is in harmony with the update formula mentioned above, in
which the full adjacency matrix A has to be kept in memory. This cause a

memory burden with a large graph and a dense-adjacency matrix.

* Directed edges and edge features. The proposed version of GCN only tar-
gets graphs without edge features (having binary adjacency matrix) and be

undirected.

« Limiting assumption. The adding of A = A + I assume that the contribution

of node v; to itself compared with its neighbor nodes are the same.

* Transductive setting. Also, with new nodes added to the graph, GCN have a

low adaption with those and re-train process is needed to pertain performance.

7

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 3.4: Visual illustration of the GraphSAGE sample and aggregate approach.
Image source: [38]

To address those drawbacks of GCN, in 2017, a new module of GraphSAGE
[38] was first introduced by William and coauthors. Figure 3.4 presents the overall
idea of GraphSAGE: information of one node is aggregated based on information
of its neighbors. Algorithm 1 presents more detailed inner working of GraphSAGE,
which is self-explained and not covered here. This work made a foundation for the
idea of Aggregation function, which is used for accumulating information in the
neighborhood to formulate the context information for a graph node. The chosen
Aggregation functions can simply be operations of mean, pooling, or a delicate
networks (LSTM etc.).

Compared to previous work of GCN, GraphSAGE has some major advances:
* Be an inductive method. It well adapt with new node data.

* Be based on the intuitive and natural idea of constructing node presentation
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Algorithm 1 GraphSAGE embedding generation [38]

Input:

> G(V,E) - Input graph

> K and W* Vk € {1,..., K} - Number of aggregation functions used and k-th
weight matrix

> AGGREGATE, - differentiable aggregator functions N : v — 2V

Ouput:

> z, - Vector representation of node v € V

1: Initialize b9 + x, Yv € V;
2: fork=1... K do

3: for v € V do
4

k k— .
hf. ) ¢ AGGREGATE, ({hf".Vu € N(v)});
5: bt o (W’f . CONCAT (hfj—l, hﬁm)))

6: end for

7: | hb <« hl/|bk|
8

9

Q,VU eV
: end for
D2y — hE Yoy

by neighborhood context.

* Be updated with mini-batch gradient descent and be a spatial gnn method. It

resolve the major memory problem of GCN.

There are many other variances and works ([39] [40] [41]) active in the field for
solving different problems or to amend shortcomings of previous works. Reasons
and details of the technique being leveraged in this work would be discussed in
Chapter 4.
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In this chapter, I propose a novel pill detection framework named KGPNet
(which stands for Knowledge Graph-assisted Pill Detection Network). I first present
the main components of the KGPNet in 4.1. I then describe how different graphs are
designed and built based on the prescription information and visual appearances
(Section 4.2). Section 4.3 explains how pill visual features are get extracted. Next,
I combine the built knowledge graphs and extracted visual features to enhance pill
detection performance by utilizing two modules - Adaptive Graph Generator (4.4)
and Graph Transformer Module (4.4.3). Finally, I introduce an auxiliary loss to

improve the effectiveness of the proposed learning model (Section 4.5).

4.1 KGPNet Overview

Graph Modeling Procedure Graph Processing Procedure
K N N l/ \‘\
/ Annotation ‘.‘ / Adaptive Rol Graphs Graph Transformer Network |
! bl [ ]
3 N, N, P ——} /o
| T | »| — | ) / N ;
| ) /] @—@ ]
: N /! fo
i i ! ] ]
! BBox Labelin P ‘
e @ ) ||| (= 1 v
" . ! Co-occurrence-based R e
y Size Graph -
| , P TTIT]
' e
e Feature Encoder
* = L]
| Relation Pseudo Misua/ Boeures
Modeling Classifier - ﬁuﬁ i ﬁ ﬁ qﬁ q q
Prescription i : Adaptive Graph Modul
- ! ph Module
CPrescnpvon—bésedh AN Enhanced Features
0-occurence Grapi R SR
! Rol ’/ ””””””””””””””
ConvNet Pooling '
{ Classifier
i | Regressor
RPN
Pill Images Visual Processing Procedure

Figure 4.1: Overview of the proposed framework. First, the Graph Modeling Procedure is used
to generate a non-directed Medical Co-occurence Graph (MCG), denoted as Gy = (V, Eq, W),
from given prescriptions, and using G; together with bounding box information from the training
dataset, Relative Size Graph (RSG) Go = (V, E2, W) is then built. Second, the pill images are
taken through the Visual Processing Procedure in which these images are passed via a backbone
network, a Region Proposal Network (RPN) and a Rol Extractor to retrieve the visual
representations for their Region of Interests. The outputs of two previous steps are the inputs for
Graph Processing Procedure. At this stage, the information from MCG and PSG are first filtered to
keep only what are relevant to input images. This work is carried out by Adaptive Graph Module.
At the same time, Rol features are leveraged to create another graph of viusually-semantic relation.
Next, all filtered graph information are transformed by Graph Transfomer Network to formulate
the context presentations for each Rols, before getting concatenated to the visual embedding to
enrich the visual features. Finally, enhanced vectors are the input for the final classifier as well as
box predictor.
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As described in the preceding sections, I examine the pill detection problem in
this study. Specifically, I focus on a practical application that recognizes pills in
the patient’s pill intake picture. My proposed model is shown in Figure 4.1. As
input, the model gets an image of pills and provides both the bounding box and
the name of each medication. To increase identification accuracy, I utilize external
knowledge acquired from a specific set of prescriptions in addition to relative size
information extracted from annotations of the training dataset. The intuition behind
my proposal is that by utilizing a large number of prescriptions, we may learn
the co-occurrence likelihood of the pills, as well as their relative size information,

thereby, improve pill detection accuracy.

As illustrated in Figure 4.1, the proposed model comprises three major compon-
ents: graph modeling, visual processing and graph processing. The first block,
1.e., graph modeling, is in charge of creating two graphs: one modeling drug inter-
actions and another representing relative size of drugs. The visual processing block
1s used to extract visual features of the pills - here the Region of Interests (Rols) in
each image, while the graph processing module attempts to depict the relationship
between the pills and then combines the visual characteristics of the pills with their
graph-based features to generate the final localization and classification decision.

The overall flow is as follows.

e Step 1 - Graphs modelling for supporting KGPNet. I construct a graph
from a given set of prescriptions, with nodes representing pills and edges re-
flecting drug linkages. I name this graph the Prescription-based Medical Co-
occurence Graph or PMCG for short. Following, with the bounding boxes’
coordinates information from training dataset, I can calculate the area of each
box, and model the relative size ratios of all the pills in the given images (the
detailed algorithm is presented in Section 4.2). This information is aggregated
to formulate Relative Size Graph (RSG in short).

e Step 2 - Feature extraction with Visual Processing Module. The original
image containing multiple pills is passed through a Convolutional Network
for extracting visual features, and a Region Proposal Network for detecting
potential region of interests. The output of two modules are fed into Rol ex-
tractor to filter out all visual presentations of pills - Rols. It should be noted
this Visual Processing Module follow the architecture of some well-known
two-step Object Detection framework, here Faster RCNN for object detection.

I let the fusion of KGPNet with one-step detector frameworks for future work.

e Step 3 - Feature enhancement by Graph Processing Module. The pills’
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visual features, along with two general graphs MCG and RSG will then be put
into the graph processing module to generate the beneficial context vectors.
On the one hand, the visual features will be fed into adaptive graph module to
make the pseudo classification decision. On the other hand, these features are
put in a feature encoder module. The objective of the adaptive graph module
is to make a soft decision for the labels of each Rols, from which the mapping
of two general graphs into adaptive ones dedicated for the input images can
be produced. For the feature encoder, its output is then leverage to build up
another visual-based graph - the third graph along with two mapped graphs.
These three graphs, representing three different relations are got transformed

by Graph Transformer Network to generate best context vectors for each Rols.

e Step 4 - Final predictions with enhanced features. The Rol visual features
acquired in Step 2 and the context embedding vector retrieved in Step 3 will
be concatenated. The context vectors take the roles of being the presentations
for neighbor pills. By observing both visual features as well as the neighbor-
hood pills, the final Classifier module are then able to produce final prediction

results.

4.2 Graphs Modelling For Supporting KGPNet
To start off, I will discuss about the first step in the working flow of KGPNet,

which is graph modeling procedure. The central idea of my proposed methodo-
logy is to use external information to improve the precision of the focused task,
namely, pill detection. The first realization is based on the link between medic-
ations as shown by their respective prescriptions. A prescription-based medical
co-occurrence graph (PMCG) is developed for this purpose. In genuine pill cap-
tures, I suspect that all medications are given to treat or mitigate certain ailments
or symptoms. Therefore, I may establish this implicit relationship by examining the
direct connections between medications and diseases. This information is included
on prescriptions given to patients by pharmacists. Subsection 4.2.1 describes the
formulation of PMCG in depth. For the second source of information, the minimal
variations in medication’s forms, colors, and patterns is its main motivation. Since
there are numerous varieties of medicines, which outnumber their limited visual
differences and qualities, every trait is vital in recognizing them. With the current
existing frameworks of two-step object detector, however, all the information about
size of Rols is diminished after going through Rol Pooling layer. By utilizing the
information about bounding box annotation, we can formulate the relative size in-
formation, and re-merge it into the visual features for best classification accuracy.

Detailed algorithm for formulate Relative Size Graph (RSG) is presented in Sub-
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section 4.2.2.

4.2.1 Prescription-based Medical Co-occurrence Graph Modelling

This section discusses my methodology for constructing a Medical Co-occurrence
Graph from a collection of prescriptions. This knowledge graph is a weighted
graph, denoted as G; = (V, E,W;), whose vertices V' represent pill classes, and
the weights W indicate the relationship between the pills. With prescriptions as
the initial data, two factors can be used to formulate graph edges E1, which are dia-
gnoses and medications. As the relationship between pills is not explicitly presen-
ted in prescriptions, I model the relation representing the edge between two nodes

(i.e., pill classes) C; and C; based on the following criteria.

e There is an edge between two pill classes C; and C; if and only if they have

been prescribed for at least one shared diagnosis.

e The weight of an edge E;; connecting pill classes C; and C; reflects the like-

lihood that these two medications will be given at the same time.

Instead of directly weighting the P111-P111 edges, I determine the weights via
Diagnose—-Pill relation. In particular, I first define a so-called Diagnose—
Pi11 impact factor, which reflects how important a pill is to a diagnosis or, in
other words, how often a pill is prescribed to cure a diagnosis. Inspired by the Term
Frequency (t £) — Inverse Dense Frequency (idf) often used in NLP domain, I
define the impact factor of a pill P; to a diagnose D; (denoted as I(P;, D;)) as
follows.
_ [S(Dj, P)|

S
I(Pj,Di) = tf(Dj,Pi) X ldf(PZ) = W X log |S‘(P‘Z)|, (41)

where S represents the set of all prescriptions, S(D;, P;) depicts the collection of
prescriptions containing both D; and P;, and S(Dj) illustrates the set of prescrip-
tions containing D;. Intuitively, t £(D;, P;) measures how often the pill P; is pre-
scribed for diagnose D;, thus it reflects the significance of P; regarding treating
D;. However, in practice, some pills are more popular among prescriptions (e.g.,
Sustenance, Dorogyne, Betaserc, etc.), which may cause negative bias when apply-

ing only the t £ term. That effect can be mitigated by the term idf(F;).

Once finished formulating the impact factors of the pills and diagnoses, I trans-
form each term Z(P;, D;) into a probabilistic view by a simple normalization over
all diagnoses as follow.

p(Pj, D;) = S0 Z(P D) 4.2)
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D is the set of all diagnoses. With p(P;, D;), the weights between two pills p(F;, P;)

can be formulated as

W(P;, Pj) = p(P;, P;) = Y p(P:, D) p(P;, D), (4.3)
DeD

where W(PF;, P;) depicts the weight between pills F;, P;, and D denotes the set of
all diagnoses. It should be noted that the Equation 4.3 make an assumption on the

independence of two events (F;, D) and (P}, D).

4.2.2 Relative Size Graph Modeling

Algorithm 2 Relative Size Graph Formulation

Input:

> A - set of annotations for all images of training dataset
> G =<V, E,W; > - Medical Co-occurrence Graph
Ouput:

> Go =< V, E, W5 > - Relative Size Graph

. Initialize s) < 1; s, <+ 0 Vi £0 €V,
: procedure CALSIZE(: - investigating class) > Find indicators of i’s neighbors
: for v; in \V; do > Set of i’s 1-hop neighbors from G;

1

2

3

4: if s; # 0 then continue;
5: end if

6 imgij — Aij;

; . .

8

9

Tinazs Trpins Ymazs Ymin < Aiji]; > BBox annotation for class i in img;;

Thaz, T0 i, Yiazs Yoin < Aijlj]; > BBox annotation for class j in img;;

area; (ﬂnax — !L":mn) X (yfnax - y;nm>’

10: areaj < (Thae — 20 ) X (Yhaz — Yin)s

11: Sj 5 X Z;ZZZ,

12: CALSIZE(j) > Recursively this calculation for node j
13: end for

14: end procedure

15: CALSIZE(0) > Spread the graph from initial node 0
16: for v; in V do

17: for v; in V do

18: if s; # 0 and s; # 0 then

19: E < EU{ei;} > Create an edge between ¢ and j
20: Wij < 2‘9?] + 5 L > Average 2 ratios for symmetricity
21: Wo = Wa U {w;}

22: end if

23: end for

24: end for > Finish formulating G-
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This subsection describes my methodology for producing the Relative Size Graph.
Let RSG be denoted by G» = (V, E, W5), in which set of vertices  and edge E are
the same as PMCG graph G;. The reason for this similarity is owing to the fact
that both graphs present the relationship between pills - the label, hence share V.
Moreover, the relative size between two pills can only be formulated if they are in
the same images, which, in turn, be in the same prescription, hence the edges set £
is also shared. W5, however, is different as compared to 177, since it represents the

relationship about relative sizes between pills.

As mentioned before, the main information source for building Relative Size
Graph is the bounding boxes annotations of the training dataset. Since the positions
of cameras for different images are not identical, the actual size of each bounding
box can not be directly used. I instead create a new value for size normalized rep-
resentation, called size indicator, denoted by s; for each class i. By setting a initial
value sop = 1 for class 0, I can traverse through all 1-hop neighbors v; of Node vg
in the graph G, and recursively calculate all indicators s;. The edge between two
node v; and v; is then can be calculated by the ratio between two indicator s; and

s;. Detail formulation is presented by Algorithm 2.

4.3 Visual Processing Module

In the following, the procedure of feature extraction for locations of interest
is presented. It is the responsibility of the Visual Processing block. In order to
accomplish this, this block must be able to distinguish what should be the major
focus and extract the characteristics associated to that region. For this purpose,
I utilize components from a conventional 2-step object detector architecture. My
Visual Processing module uses Faster RCNN, to be precise [15]. From Figure 4.1, it
can be seen that this blocks consists of three submodules: a Convolutional Network,

a Region Proposal Network and a Rol Pooling Layer.

For selecting ConvNet architecture, there are various candidate modules to choose
from such as VGG [29] or ResNet [31] to extract the visual features. ResNet-50
[31] is currently being utilized for all experiments. I personally choose this ver-
sion among various alternatives because it well balances between the complexity
and accuracy for this pill detection task. After passing an image through this fea-
ture extractor, I receive a 4096-dimensional feature vector. By forward propagating
a typical picture through five convolutional blocks and one fully connected layer,
features are generated (Figure 4.2). I encourage readers referring to [31] for more
network architecture details. Besides, the remaining two modules are taken from
the original framework Faster R-CNN [15]. Region Proposal Network (RPN) (Fig-
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Figure 4.2: (Left) ResNet50 architecture. The last Softmax is discarded in my feature
extractor. (Middle) Convolution block which changes the dimension of the input. (Right)
Identity block which will not change the dimension of the input.

Image source: Optimized Deep Convolutional Neural Networks for Identification of
Macular Diseases from Optical Coherence Tomography Images [42].

ure 4.3) is a fully convolutional network that takes the visual feature vector from
previous module and generates proposals with various scales and aspect ratios.
Rather than using pyramids of images or pyramids of filters, RPN make use of
k anchor boxes. An anchor box is a reference box of a specific scale and aspect
ratio. With multiple reference anchor boxes, then multiple scales and aspect ratios
exist for the single region. This can be thought of as a pyramid of reference anchor
boxes. Each region is then mapped to each reference anchor box, and thus detecting

objects at different scales and aspect ratios.

The last layer in Visual Processing module is a Rol Pooling layer. It simply
works by splitting each region proposal into a grid of cells. The max pooling op-
eration is applied to each cell in the grid to return a single value. All values from
all cells represent the feature vector. If the grid size is 2 x 2, then the feature vector
length is 4. The reason for this operation is to extract a fixed-length feature vector
from each region proposal. With this process, the latter module of KGPNet can
parallelize the computation and leverage the connections amongs Rols for enhan-
cing classification accuracy. However, as previously mentioned, this is the main
reason for diminishing size information of pills. Relative Size Graph proposed in

4.2.2 help alleviate this issue.
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Figure 4.3: Region Proposal Network (RPN).
Image source: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks [15]

4.4 Graph Processing Module

This section would cover my major contribution in the architecture of KGPNet
- Graph Processing Module. It comprises of three sub-components that works for
different purposes. The first one is Adaptive Graph Module, which is responsible
for extracting adaptive graphs of Rols from the original MCG and RSG graphs.
Details about it would be discussed in 4.4.1. Following, a visual-based graph is
generated with the aid of a simple feature encoder, presented in 4.4.2. Lastly, sec-
tion ?? discusses about Graph Transformer module, which learn the best context

presentations for enhancing information of each Rol.

4.4.1 Adaptive Graph Module
After defining the generic knowledge graphs of MCG and RSG, this module

is derived intuitively from a realization. Specifically, while addressing a specific
picture - a query, KGPNet - a student should be able to choose which portion of
the two graphs - two reference books - should be consulted. This concept is natural
and closely related to the motivation of Attention mechanism [43], which has its

origin from the field of Natural Language Processing (NLP).

This module’s primary component is a Pseudo Classifier, which provides ap-
proximate classification results using solely visual features of Rols. These tempor-
ary identification results are then utilized as a filter layer to pull from the MCG
and RSG graphs just information pertaining to the pills in the image (and omitting
information from the nodes that are not associated with the pills in the picture). Ef-
fectively, the pills in my dataset may be divided into two categories: simple samples

and difficult samples, illustrated in Fig.4.4. Pseudo Classifier can readily recognize
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Figure 4.4: Examples of easy and hard samples.

the former since they possess distinguishable visual characteristics. However, the
latter require extra information about nearby tablets to help in their recognition.
Using only the visual-based Pseudo Classifier, I am able to filter out the majority
of the simple ones and used them as context pills for recognizing the remaining

hard ones.

In current implementation, pseudo classifier is straightforwardly implemented
as a fully connected layer. Having attained the results of this module, a composites
of simple matrix multiplications can be applied to extract the sections of original
knowledge graphs that need to be focused. Let NV be the number of pill classes and
M be the number of pills in the input image. Suppose P = [pij]izw;jzﬁ is the
matrix whose row vectors represent the logits produced by the pseudo classifier,
and A; = [a}] =T N1 A2 = [a2)] T w.—1 7 denote the weighted adjacency
matrices for MCG G; and RSG G», respectively. The adaptive adjacency matrices,
denoted as A; and A, are matrices of size M x M, each row depicts the condensed
relational information of a pill - a specific Rol with others in the input image. A; is

calculated by performing a composition of matrix multiplications as follows.

Ai=0o(P)-A-o(P)T. 4.4)

Here the symbol o denotes the Softmax activation function. Intuitively, the i-th
row of A; is a weighted sum of all the G;’s adjacency matrix, whose weights are

the classification probabilities corresponding to the i-th pill in the input image.

4.4.2 Visual-based Graph Formulation

After utilizing external knowledge graphs to help in pill recognition, another
realization can be thought of is to exploit the relation contained in the visual ap-
pearances themselves. Despite the fact that medications appear to be arbitrarily
shaped or colored, several medical studies instead demonstrate an actual correla-

tion between their aesthetics and their efficacy or active constituents [44][45][46].
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With this motivation, I also make use of Rols’ visual features for creating the
third graph which models the visually semantical relationship among pills in the
input image. All visual features are first employed through a simple non-linear
function F: R¥ — R for bringing them from original H-dimensional space into
a H -dimensional latent one in which their relations can be best presented. The
output latent vectors are then directly used for calculating the correlations between
Rols as follow.

w?j = Z Zj, (45)

in which wf’j denotes the visual-based weight between two Rols, z; and z; are latent
presentations of i-th and j-th Rol, respectively. When performing a matrix multi-
plication instead of above pair-wise product, I can achieve the weighted adjacency
matrix Ws for the third graph Gs, which is densely populated and its weight values

indicate the relavances of Rols visually.

After this module, KGPNet have extracted three adaptive graphs’ relations A; —
i = 1, 3. Since all three possess the same set of nodes V, which are the regions of
interest (Rols) of the input pictures, it can be interpreted as a single heterogeneous
graph G with one node type and three edge types corresponding to three distinct

senses of relationship.

4.4.3 Graph Transformer Module

The weighted adjacency matrices extracted from G, Go or G3 can not be eas-
ily digested and combined with Rols’ visual features without an explicit form of
aggregation. In addition, the vectors should be well designed for each Rol, since
the effects of different neighbors to a particular pill are not identical. Intuitively,
there should be a module capable of accumulating these previously constructed re-
lations together with information representative for each Rol in order to construct
the context vector that best describes the surrounding environment for the pill un-
der consideration. Graph Transformer Network (GTN) is the final module in charge

of creating such vectors that are best suited for Rols.

Before analyzing GTN, it is crucial to figure representative attributes for each
Rol in order to generate the most relevant context vectors. Using the retrieved Rol
visual features to depict the relevant Rols is the most natural solution. However,
earlier researches[6][47] and experimental findings indicate that this option is not
particularly advantageous. There are several factors account for this behavior, listed

below.

* In the circumstances of heavy occlusions and ambiguities, the visual features

are not reliable.
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* In the dataset, different images have different light conditions, camera angles,
zoom levels, which, in turn make an intra — variance in visual features of one

class.

* Two pills with identical appearances would in turn having similar visual fea-

tures, hence not representative.

In these previous works [6][47], the authors also provide a simple yet effective
alternatives to the visual features. The weights of the classifier for each category
actually include high-level semantic information since they represent the feature
activation learned from all pictures. The weight is tuned with the aim of producing
correct classification results regardless the variances of input features, so can be a
more stable option. Formally, let W € R¥*¢ denote the weights of the previous
classifiers (parameters) for all the C' categories. The representative vectors of Rols
batch can be obtained by copying the parameters W from the previous classific-
ation layer in the bbox head of the detection networks, then multiplied with the

RMXC

output P € of Pseudo Classifier.

Wgor = P-WT. (4.6)

Note that the classifiers are updated in each iteration during training so that the
depictive features Wpg,; becomes more accurate from time to time. Furthermore,

this approach enable my model to be trained in an end-to-end style. Graph Trans-

Multi-channel
1x1 Conv

Multichannel Q®
Ix1 Conv

Figure 4.5: Graph Transformer Network (GTN) architecture. GTN softly selects
adjacency matrices (edge types) from the set of adjacency matrices A of adaptive
heterogeneous graph G and learns new meta-path graphs represented by A via the matrix
multiplication of two selected adjacency tensors (Q; and Q5. The soft adjacency matrix
selection are weighted sums of candidate adjacency matrices obtained by C' channels of
1 x 1 convolution with non-negative weights with softmax activation. Image source:
Graph Transformer Networks [48]
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former Network (GTN) is the aggregator for generating context vectors correlative
to all Rols. It should be able to learn the node embeddings of graphs with fol-
lowing characteristics: being heterogeneous in nature and having adaptive graph
structures. The heterogeneity of the input graph coincides with that of my adaptive
graph G. The latter criterion must be met since the input graphs for images are var-
ied and the graph formed for a particular image during one iteration is not identical
to the graph generated for the same image during subsequent iterations because
the learning process is ongoing. For this module, I leverage the architecture pro-
posed in [48]. It is particularly suited for scenarios involving these aforementioned

criteria.

GTN’s fundamental concept is to produce new graph structures and simultan-
eously learn node representations on the learnt graphs. GTNs seek alternative
graph structures utilizing various candidate adjacency matrices to execute more ef-
fective graph convolutions and learn more potent node representations, as opposed

to the majority of CNNSs on graphs, which assume the graph is supplied.

Figure 4.5 describe the detail architecture of GTN. GTN softly selects two
stacks of graph structures Q; and Q, € RM*MxC from candidate adaptive adja-
cency matrices A. For doing so, it computes the convex combinations of adjacency
matrices by a C-channel 1 x 1 convolution as in Fig. 4.5 with the weights from

softmax function as:
Q= F(A;Wy) = d(A;0(Wy)), 4.7)

where ¢ is the convolution layer and W, € RY*1*1*K jg the parameter of ¢.
Second, it learns C' new graph structure by the composition of two stacked rela-
tions (i.e., matrix multiplication of two adjacency tensors, (Q; - Q2). The output
graphs result A, together with Rols’ representative features Wy, is then used as
the input for normal Graph Convolution Network (GCN) to produce final node
presentations - our desired context vectors. These vectors are directly concatenated
with their corresponding Rols’ visual features, before getting fed into both Bound-

ing Box Regressor and Classifier to enhance the results of both tasks.

4.5 KGPNet’s Objectives and Losses

This section presents the details about my model’s objectives and the corres-
ponding losses to achieve those goals. Subsection 4.5.1 covers the losses which
are widely used in 2-step detectors and also in KGPNet. My auxiliary loss, which

bases on co-occurrence information, is described in 4.5.2.
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4.5.1 Two-step Object Detectors’ Losses
a, Region Proposal Network’s Losses

The loss for RPN consists of two components: classification loss combined with

bounding box regression loss.

1 * )‘ * m *
N E Ls (pivpi) + N, E b; - Li ooth (tz’ - ti) ) (4.8)
cls p box

i

L{pi}, {ti}) =

in which

0.522 if [z| <1

Limooth () — 4.9)

|z] — 0.5 otherwise
In this composite loss function, p;, p; are the predicted probability of anchor i being
an object and the ground truth label whether anchor i is the object respectively.
The L. 1s again a log loss function with 2 classes — sample is the target object
versus not. The regression loss uses a smoothing L1 function. Here ¢; and ¢} are the
differences of four predicted coordinates and the ground truth coordinates with the
coordinates of the anchor boxes, respectively. The N, is a normalization term set
to the mini-batch size and the NV, is also a normalization term set to the number
of anchor boxes. The A is set to 10, which is a balancing parameter such that £

and Ly, are weighted equally.

b, Output’s Losses

KGPNet’s final results consist of predicted labels for Rols and modifications
to the bounding boxes provided by RPN. Due of this, there are two distinct losses
associated with these outcomes. While the loss for a bounding box regressor is
equal to that of RPN network, the classification loss is instead the cross entropy

loss for multilabel.

C
Lo = =" pilog(p:) (4.10)
=0

4.5.2 Triplet Co-occurrence Enhancement Loss

Motivationally, the frequency with which distinct pills co-occur should influ-
ence KGPNet’s behavior. Specifically, if the framework can identify the existence
of pill A in the image with a high degree of confidence, it should also make assump-
tions about the appearance of A’s neighbors based on the Medical Co-occurrence
Graph G;.

I suggest the usage of an auxiliary loss called Triplet Co-occurrence Enhance-

ment Loss for this reason. Given that A is a groundtruth pill in the picture, this loss
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aims to adjust the output of Pseudo Classification by motivating the probability of

A and its neighbors produced by this layer.

Let’s denote the i-th Region of Interest be r; with its corresponding actual la-
bel be /;. The set of top (k + 1) closest and furthest neighbors of r; are N},
and N, in that order. Here, closest neighbors indicates nodes which have con-

nections - edges of highest weights with /;, while the term furthest denotes the

opposite. For N}, the groundtruth labels set is Lpos = {I00s, lhs: - - -+ Lips }» and
Lneg = {I9eg: lhegs - -+ iy} is label set of N}, .

The objective for the i-th Rol is as

‘Czux = pi(li)p(N]gos) - ( - pi(li))p(szeg)
k M k M
=pil) Y 1= [T = pmBo)] = (1= pi0) D> _[1 =[]0 = pulie,))].
7=0 m=0 q=0 n=0
(4.11)
and for all Rol is
M
Lowr =Y Liy (4.12)
i=0

In Eq.4.11 and 4.12, M is the total number of Rols in the image, p is the output

after going through softmax activation of logits produced by Pseudo Classifier.

The objective during the training process is to maximize the quantity L.,

which in turn maximize each positive term p;(l;)p(N,,;) while minimize the neg-

ative opposition (1 — p;(;))p(Ny..,).
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This chapter covers the experimental results of the proposed KGPNet archi-
tecture for the Pill Detection challenge. In addition, the performance of KGPNet
is compared to existing approaches in the field of object detection as well as to
another study that applies an external Knowledge Graph. In addition, various ab-
lation experiments are offered to provide a better understanding of the impact of

each module on KGPNet’s overall performance.

5.1 Custom Dataset

To the best of my knowledge, previous studies working on Pill Indentification
problem only limited their works on the dataset captured in the laboratory, with
limited environmental conditions (light, angle, zoom level, ... ) (NIH Dataset [49]);
and there is only one pill per a single image (CURE Dataset [50]). Due to those
reasons, these datasets do not greatly correlate with the reality, in which patients
actually take arbitrary number of drugs, and those drugs are supporting each others
to cure some symptoms. This, in turn, make the existing models less appropriate to

actual real-world medications photos captured by patients.

Table 5.1: Comparison of existing pill images datasets (CURE and NIH) with my custom
VAIPE PP dataset.

|NIH | CURE | VAIPE PP

Number of pill images 7000 | 8973 | 9426
Number of pill categories | 1000 | 196 96

Instance per category 7 40-50 | > 30
[llumination conditions | 1 3 > 50
Backgrounds 1 6 > 50
Number of prescriptions |0 0 1,527

As a matter of fact, there is also no publicly available dataset of these pills
images, in which the pills follows intakes of actual patients. Motivated by this real-
ization, this study, as a part of VAIPE - a project aiming at developing a protective
healthcare monitoring and supporting system for Vietnamese, dedicates to build a
set of large-scale open data containing prescription images and prescription drug
images, called VAIPE PP.

In 2021 and 2022, 1527 prescriptions were obtained from anonymous patients
at 4 major institutes in Vietnam, treating a variety of diseases. After carefully ex-
amining the data and patients’ privacy, each prescription is carefully labeled un-

der the support of Vietnamese optical character recognition (OCR) models. Af-
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terwards, the medications are purchased in accordance with the relevant prescrip-
tions, then images are taken following the correct tablets for each usage throughout
the day. Specifically, prescriptions will mostly be separated by timeslots to take
the medicines (morning, noon afternoon and evening). For each slot, patients
should only take a subset of pills contained in the prescriptions, corresponding to
the amount assigned. The images are taken following those timeslots in prescrip-
tions, in many different contexts (various backgrounds, lighting conditions, in-hand
or out-of-hand, ...) and by different smartphones. For each prescription, the num-
ber of images taken is about 5 — 10, and the total number of drug images collected

was 9426 pill images with 96 independent drug labels.

Table 5.1 summarizes the details meta-data about three datasets of NIH, CURE,
VAIPE PP. As it suggests, compared to two previous datasets, VAIPE PP is con-
structed following a much more flexible procedure, with fewer restrictions. Owing
to this reason, VAIPE PP has a great generalization, and can serve as a reliable data

source for training generic pill detectors.

5.2 Evaluation Methodology
5.2.1 Evaluation Metrics

For assessing KGPNet as well as other backbones and related works’s perform-
ances, COCO mAPs metrics are currently being adopted. This set of metrics is
widely used for evaluating the works of object detection as well as segmentation
problem.

Mean Average Precision (mAP), as its name suggest, is the mean of Average

Precision (AP) over all classes - calculated over recall values from O to 1.
1 &
mAP = EZ;AR. (5.1

Average Precision (AP) is the area under the Precision-Recall curve, calculated for
one class, at a given IoU threshold. It should be noted that for COCO Evaluator, it
make no distinction between AP and mAP and assume the difference is clear from
context. From now on, AP and mAP are used interchangeably. IoU - Intersect over
Union is a factor to evaluate the fitness of predicted bounding boxes compared with
the groundtruth ones, computed by taking the ratio between intersected area over
the union area of the two boxes. By setting an IoU threshold, it can clarify whether
a predicted instance is True Positive (TP) or False Positive (FP), hence affect the
AP results. Table 5.2 summarizes the set of COCO APs evaluation metrics. The

main metric is AP. Since AP is averaged over multiple Intersection over Union
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Table 5.2: COCO APs evaluation metrics set.

\ Metrics \ Description

AP Average AP at IoU thres = 0.5,1.0, step 0.05
Average .
Precision (AP) (COCO metric)
AP50 AP given IoU thres = 0.5 (PASCAL VOC metric)
AP75 AP given IoU thres = 0.75 (strict metric)
AP Across APs AP for small object : area < 322
Scales APm AP for medium object: 322 < area < 962
API AP for large object: area > 962

(IoU) values, this metrics rewards detectors with better localization.

5.2.2 Evaluation Scenarios
a, Comparison benchmarks

As indicated before, the baseline with which KGPNet presently integrates is
Faster R-CNN [15]; hence, the original framework is also utilized for comparison.
There are to Faster R-CNN alternatives being installed: one with single Convolu-
tional features C4 and the other with FPN’s characteristics. Also, the most repres-
entative framework that also utilize external knowledge graph for Object Detection

task [6] is also adopt for this research task to compare with KGPNet.

b, Hyper-parameters settings

Below list describes the settings applied to all benchmarks, as well as KGPNet

framework.

* For all baselines as well as the related work used for comparison, the input
settings are provided the same as the requirements of those frameworks (Faster
R-CNN [15] requires only images, etc.), while other parameters are tuned for

their best performances.

» For KGPNet, a fixed set of hyper-parameters is used throughout all experi-
ments. The chosen set is not guaranteed to produce the best results, but can
still illustrate KGPNet’s robustness over other methodology in dealing with

Pill Detection problem.

¢, Train and evaluation settings

Table 5.3 provides information on the training and evaluation procedures shared
by all frameworks. The selected training approach of 20000 iterations with a batch
size of 16 is based on the experimental finding when the majority of object detector

frameworks get converged. All frameworks initial starting points are the weights
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Table 5.3: Details about training and evaluation processes’ hyper-parameters.

Training Procedure Evaluation Procedure ) ) )
g Train Iterations Batch Size

Prescriptions ~ Images  Prescriptions  Images

1527 (100%) 7514 (78%) 0 (0%) 1912 (22%) 20000 16

achieved by pre-training them with COCO 2017 dataset [51].

5.2.3 Implementation Details

In my KGPNet implementation, the dimensions of node embeddings are set as
64. The Graph Transformer Module has only one layer, with number of channels
set as 10. The optimizer used is AdamW [52], and the initial learning rate is 0.001.
During the training process, the input images are resized so that the shortest edges
have the size of 800, with a limit of 1333 on the longer edge. The ratios are kept
the same as the original images. If max size is reached, then downscale so that the
longer edge does not exceed 1333. For augmentation, simple random horizontal and
vertical flips are installed. All the implementation is performed with the help of Py-
torch framework, and the training, as well as evaluation processes, are conducted
with 2 NVIDIA GeForce RTX 3090 GPUs.

All models installed are trained in an end-to-end style until the maximum num-

ber of iterations (mentioned in Table 5.3) reached.

5.3 Experimental Results of KGPNet

This section would discuss about the actual performance of KGPNet, together

with some baselines and other related works.

5.3.1 Comparison with Object Detection framework

Since the current installation of KGPNet is associated with Faster R-CNN archi-
tecture [15], a detailed comparison between KGPNet and this baseline is carried

out. Two alternatives of feature extractor backbone are used: ResNet-50-C4 and
ResNet-50-FPN.

Table 5.4 presents the numeric results of KGPNet and Faster R-CNN with two
different backbones, and Fig. 5.1 makes a visualization from those results. In both
circumstances, KGPNet show its superior over Faster R-CNN by large performance
gaps for all metrics being used. Specifically, with the use of single feature map pro-
duced by convolution block C4 in ResNet-50 backbone, the average precision AP of
Faster R-CNN is 62.6654, while that of KGPNet is 68.3751 (9.2% enhancement). In
addition, when replace C4’s feature map with multi-scale feature maps produced

by Feature Pyramid Network (FPN) [53], similar observation can be drawn, that
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KGPNet make an improvement of 9.4% for overall AP metrics.

AP

S ® FRCNN C4

® FRCNN FPN

AP50 AP ® KGPNet C4
100 75 KGPNet FPN
90 75

AP75 APm

Figure 5.1: Comparison of KGPNet performance with Faster R-CNN baseline.

Table 5.4: Comparison of KGPNet performance with Faster R-CNN baseline.

Backbone | AP AP50 AP75 APs  APm APl
Faster R-CNN | 62.6654 87.0327 74.4862 75 583266 62.9044

ResNet-50-C4

KGPNet 68.3751 92.55893 81.728 80 64.358 68.748
ResNet-50-EPN Faster R-CNN | 63.7127 86.66296 76.925 71.2623 58.109 64.5976
e KGPNet 69.7001 94.4101 83.3843 90 66.4566 70.0557

For more detailed performance over each class, Figure 5.2 visualizes the AP
at JoU = .50 : .05 : .95 for all labels in the dataset. The yellow and green beans
represent results achieved by two alternatives of the KGPNet, while the blue and
the pink ones denotes Faster R-CNN performance. From this pirate plot, apart from
the fact that the mean AP over all classes of KGPNet variances are better than
those produced by Faster R-CNN, there are also some great insights which could
be drawn. By observing the density bean of each group, it can be seen that KGPNet
also produce a more reliable and stable results over all classes. While the two beans
of Faster R-CNN exhibit a great variance, the beans of KGPNet performance are
more condensed. Additionally, the thin rectangles of two KGPNet groups indicate
a condensed 95% High Density Interval (HDI) with limited value ranges.

Upon investigating the performance, with the use of FPN, Faster R-CNN and
KGPNet can achieve a more robust result while remain an acceptable speed. Hence,
from now on without any further mention, all the experiments are carried out with
FPN backbone.
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Figure 5.2: Comparison of KGPNet performance with Faster R-CNN baseline over each
individual class.

5.3.2 Effect of Medical Co-occurrence Graph on performance of Pill

Detection framework

This section is dedicated for describing the effects of MCG on the performance
of Pill Detector frameworks. Figure 5.3a and 5.3b respectively display the label
confusion matrix produced by Faster R-CNN and KGPNet on testing dataset. The
two confusion matrices are row-wisedly normalized before being used for plotting.
In addition, all the zero values are disregarded in this visualisation, hence having
white color. By observing the main diagonal of the matrix, it can be seen that
there are many labels which are still misclassified (in red color) made by Faster R-
CNN. The situation is much positive with KGPNet, most of the labels are correctly
classified and the confusion cases are greatly reduced.

For further investigation, I make a visualization of a label - Hexinvon-8mg that
is usually puzzled by Faster R-CNN in Figure 5.4. As the figure illustrates, all
the pills that are usually mixed up with Hexinvon-8mg - suggested by Confusion
Matrix 5.3a, possess very identical appearances compared with each other (round
shape, white color, etc.). For KGPNet, by observing the row of Hexinvon-8mg, it
can be seen that the problem is successfully alleviated with the aid of MCG graph.
Figure 5.5 illustrates an example case, in which Hexinvon-8mg is successfully
distinguished by KGPNet with a high confidence scores, while in the case of Faster
R-CNN, this pill is miscategorized as Alpha-Chymotrypsine. By basing on the
context pills around the hard pill samples - in this case Hexinvon-8mg, KGPNet

have well differentiated and determined the true label in most cases.
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Figure 5.4: Misclassified pills made by Faster R-CNN

5.3.3 Comparison with Object Detection framework which leverage ex-

ternal knowledge

As previously mentioned, this is the first study that focuses on solving Pill De-
tection challenge utilizing an external knowledge graph. Due to this, none of the

preceding works are genuinely tight-correlated. Indeed, earlier research has also
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(a) (b)
Figure 5.5: Predictions for a hard sample made by Faster R-CNN and KGPNet given the
same image. a - Faster R-CNN; b - Conv KGPNet.

utilized external information to improve the Object Detection problem. I utilize
one of the most current studies with this direction - [6] to solve my specified prob-

lem.

Briefly, aside from the majority of studies that construct graphs using external
data (handcrafted linguistic knowledge, etc.) or by implicitly learning a fully-connected
graph between regions of interest (Rols), Spatial-aware Graph Relation Network
(SGRN) [6] is a framework that adaptively discovers and incorporates key semantic
and spatial relationships for reasoning over each Rol. Due to this, SGRN requires
no extra information and hence can be installed with minor changes compared to

the original public work, and thus remains its original strength.

Table 5.5: Comparison of KGPNet performance with SGRN.

Framework ‘ AP AP50 AP75 APs APm APl

Faster R-CNN | 63.71 86.66 7692 71.26 58.10 64.59
SGRN [6] 65.88 88.83 79.64 7631 61.58 66.28
KGPNet 69.70 94.41 83.38 90.00 66.45 70.05

Table 5.5 summarizes the results of SGRN, compared with Faster R-CNN and
KGPNet. SGRN is also a module that replaces the output layer of the original
Faster R-CNN, much as KGPNet does. This is the reason why Faster R-CNN is put
into comparison. Fron the numbers, it can be seen the effectiveness of SGRN over
Faster R-CNNN, but the situation is different upon comparing with KGPNet. The
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overall AP metrics achieved by SGRN is 65.88, and KGPNet achieves the better
score with the gap of nearly 4. Upon other metrics AP50, AP75, AP[s, m, 1], KG-
PNet show its superior by enhancing the performance from 5.1% for AP75 metrics
to 17.1% for APs metrics.

Adapting to the challenge of Pill Detection, SGRN reveal a major weakness.
The information of spatial relationships between pills in an image is noisy and
arbitrary, hence it is an unreliable source of information. Since SGRN works rely
on this knowledge, it can not produce a good enough result for dealing with cases

of hard samples, compared with this proposal.

5.4 Ablation studies

For studying the effectiveness of each individual component to the overall KG-
PNet’s performance, the detailed ablation studies have been conducted, with the
configuration mentioned in Table 5.6. The + sign indicates the presence of a com-
ponent in a specific version, while — denotes the opposite. Since my vanilla back-
bone model is Faster R-CNN, without any proposed module, it also listed in the
table. The ablation of each module is quite straight-forward to adopt without any

replacement needed.

Table 5.6: Different versions of KGPNet with the ablations of components.

‘ gl gQ g?) GTN Laum

Faster R-CNN
KGPNet vl
KGPNet v2
KGPNet v3
KGPNet v4
KGPNet v5
KGPNet v6

+

+
+

+ 4+ +

—+ -
—+

+ + + + + 4+
+ 4+ + 4+

+ o+ +

+

Especially, for the adoption of KGPNet without GTN module, a normal Graph
Convolutional Network (GCN) is used for learning the node presentations. This
module is shared for all three homogeneous graphs G;, Go and Gs, and the final

used node presentations used is the average results of three outputs.

Figure 5.6 has visually demonstrated the performance of different KGPNet ver-
sions. There are some important insights that can be drawn from this illustration.
First, the KGPNet version with all components work best by showing its superior
over all recorded metrics. Second, all KGPNet versions is better than vannila Faster
R-CNN backbone, which shows the effectiveness of each individual component on

the overall performance of KGPNet, compared with the well known Object Detec-
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Figure 5.6: Performance comparison of different KGPNet versions with the ablations of
components.

tion framework Faster R-CNN.
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CHAPTER 6. CONCLUSION AND FUTURE WORKS

6.1 Summary

In this research, I present a unique method for resolving problems in the image-
based pill detection task. The proposed technique explicitly reveals the relation-
ships among pills in medication captures, and makes good uses of them to improve
the identification of pills from photos. These information is specifically represen-
ted as a medical knowledge graph that is utilized to help the primary job of pill
recognition. In addition, prescriptions are extra data source for modeling one of

the knowledge graphs being used.

Extensive experiments on a collection of real-world pill photos - VAIPE PP
revealed that the proposed framework outperforms the baseline that employs solely
pill images by a significant margin - up to 9.4% for COCO AP metrics. I also
study the influence of the prescription-based medical co-occurence graph on pill
detection performance and find that the graph plays a key role in enhancing the
overall system’s performance and solving the major problem of this task. I believe

that utilizing the external graphs will improve pill identification outcomes.

6.2 Suggestion for Future Works

I am now developing this study by incorporate this proposed module with many
more Object Detection frameworks to better verify its robustness regardless of
choosen backbones. In addition, since the desired outcome of this work is an actual
application that can aid patients in recognizing their pills, additional effort should
be made to balance out the two factor of accuracy and efficiency. Finally, I want to

think of establishing its applicability in other clinical contexts.
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